首页> 外文OA文献 >Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields
【2h】

Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields

机译:马尔可夫随机场的癌症组织的复杂器官型3D模型的图像数据分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy.
机译:上皮肿瘤类型(例如前列腺癌)的器官型,三维(3D)细胞培养模型概括了实体癌的结构和组织学的关键方面。当模型中包含其他成分(例如细胞外基质和肿瘤微环境)时,多细胞3D类器官的形态计量分析尤为重要。迄今为止,这种模型的复杂性限制了它们的成功实施。迫切需要自动,准确和健壮的图像分割工具来促进此类生物学相关3D细胞培养模型的分析。我们提出了一种基于马尔可夫随机场(MRF)的分割方法,并说明了使用与癌症相关的成纤维细胞(CAF)共培养的前列腺癌细胞的器官型3D模型中的3D堆栈图像数据的方法。 3D分割输出表明这些细胞类型在模型中彼此物理接触,这对肿瘤生物学具有重要意义。使用地面真相标签对细分效果进行量化,我们展示了该方法的每个步骤如何提高细分精度。我们提供地面真相标签以及图像数据和代码。使用独立的图像数据,我们证明了我们的分割方法也更普遍地适用于其他类型的细胞显微镜,而不仅限于荧光显微镜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号